A Generalization of Miller’s Primality Theorem Pedro Berrizbeitia and Aurora Olivieri

نویسنده

  • PEDRO BERRIZBEITIA
چکیده

For any integer r we show that the notion of ω-prime to base a introduced by Berrizbeitia and Berry, 2000, leads to a primality test for numbers n congruent to 1 modulo r, which runs in polynomial time assuming the Extended Riemann Hypothesis (ERH). For r = 2 we obtain Miller’s classical result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Mersenne and Eisenstein Mersenne primes

The Biquadratic Reciprocity Law is used to produce a deterministic primality test for Gaussian Mersenne norms which is analogous to the Lucas–Lehmer test for Mersenne numbers. It is shown that the proposed test could not have been obtained from the Quadratic Reciprocity Law and Proth’s Theorem. Other properties of Gaussian Mersenne norms that contribute to the search for large primes are given....

متن کامل

Pseudopowers and primality proving

The so-called pseudosquares can be employed in very powerful machinery for the primality testing of integers N . In fact, assuming reasonable heuristics (which have been confirmed for numbers to 2) they can be used to provide a deterministic primality test in time O(log N), which some believe to be best possible. In the 1980s D.H. Lehmer posed a question tantamount to whether this could be exte...

متن کامل

A Potentially Fast Primality Test

The running time is O(r log n). It can be shown by elementary means that the required r exists in O(log n). So the running time is O(log n). Moreover, by Fouvry’s Theorem [8], such r exists in O(log n), so the running time becomes O(log n). In [10], Lenstra and Pomerance showed that the AKS primality test can be improved by replacing the polynomial x − 1 in equation (1.1) with a specially const...

متن کامل

Biquadratic reciprocity and a Lucasian primality test

Let {sk, k ≥ 0} be the sequence defined from a given initial value, the seed, s0, by the recurrence sk+1 = s 2 k − 2, k ≥ 0. Then, for a suitable seed s0, the number Mh,n = h · 2n − 1 (where h < 2n is odd) is prime iff sn−2 ≡ 0 mod Mh,n. In general s0 depends both on h and on n. We describe a slight modification of this test which determines primality of numbers h·2n±1 with a seed which depends...

متن کامل

Sharpening "Primes is in P" for a large family of numbers

We present algorithms that are deterministic primality tests for a large family of integers, namely, integers n ≡ 1 (mod 4) for which an integer a is given such that the Jacobi symbol ( a n ) = −1, and integers n ≡ −1 (mod 4) for which an integer a is given such that ( a n ) = ( 1−a n ) = −1. The algorithms we present run in 2−min(k,[2 log log n])Õ((logn)6) time, where k = ν2(n− 1) is the exact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008